
LATENT SEMANTIC INDEXING VIA A SEMI-DISCRETE

MATRIX DECOMPOSITION

TAMARA G. KOLDA� AND DIANNE P. O'LEARYy

Abstract. With the electronic storage of documents comes the possibility of build-
ing search engines that can automatically choose documents relevant to a given set of
topics. In information retrieval, we wish to match queries with relevant documents.
Documents can be represented by the terms that appear within them, but literal match-
ing of terms does not necessarily retrieve all relevant documents. There are a number of
information retrieval systems based on inexact matches. Latent Semantic Indexing rep-
resents documents by approximations and tends to cluster documents on similar topics
even if their term pro�les are somewhat di�erent. This approximate representation is
usually accomplished using a low-rank singular value decomposition (SVD) approxima-
tion. In this paper, we use an alternate decomposition, the semi-discrete decomposition
(SDD). For equal query times, the SDD does as well as the SVD and uses less than
one-tenth the storage for the MEDLINE test set.

Key words. Information Retrieval, Latent Semantic Indexing, Singular Value De-
composition, Semi-Discrete Decomposition

1. Introduction. With the electronic storage of documents comes
the possibility of building search engines that can automatically choose doc-
uments relevant to a given set of topics. Information requests, or queries,
are formatted according to the rules of the particular information retrieval
(IR) system. For example, library catalogs are typically searched using a
Boolean framework that connects key words using logical constructs such as
and, or, and not [5]. Somewhat more complicated text pattern searches

are used in systems such as the grep tool in UNIX [5]. Both the Boolean
and text pattern search systems are based on exact matches: a search for
\Samuel Clemens" would not retrieve documents that only contained the
pseudonym \Mark Twain".

There are a number of information retrieval systems based on inex-
act matches. These systems use information about the distribution of
terms among the stored documents. For instance, if many documents
about Samuel Clemens also contained references to Mark Twain, then a
query about \Samuel Clemens" might well produce a response including
documents that refer to \Mark Twain" without mentioning Clemens. An
example is the INQUERY system, which ranks documents according to
the probability that they are relevant, determining the probability via an
inference net [2].

� Applied Mathematics Program, University of Maryland, College Park, MD
20742. The work of this author was supported by the NSA, NPSC, and CCS.
(kolda@math.umd.edu)

y Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742. The work of this author was supported
by the National Science Foundation under Grant CCR-95-03126 (oleary@cs.umd.edu)

1



2 TAMARA G. KOLDA AND DIANNE P. O'LEARY

The framework we are interested in here is the vector space framework

such as that used in the SMART system [8]. In the vector space framework,
indexing terms and documents are represented in a matrix { one row per
term and one column per document. The (i; j)th entry in the matrix repre-
sents the importance of term i in document j. A query is a column vector
with entries representing the importance of each term, and documents are
scored for relevance by comparing the query with the corresponding column
of the matrix. More details of this approach are given in Section 2.

Latent semantic indexing (LSI) is based on the assumption that ex-
act matching of the query does not necessarily retrieve the most relevant
documents. In an LSI system, only the most important features of the
term-document matrix are stored, in hopes of revealing relations among
documents while reducing the storage burden. Ideally, the representations
give conceptual links based on the latent semantic information within the
documents. The original approach to building an LSI representation, pro-
posed by Deerwester et al.[3], uses a low-rank approximation derived from
the singular value decomposition (SVD) of the term-document matrix. LSI
via the SVD will be discussed further in Section 3.

The SVD has many nice theoretical properties, but we develop in this
work a discrete decomposition to be used in place of the SVD. Our decom-
position is far more economical in storage but equally useful for information
retrieval. We introduce this decomposition in Section 4. Computational
comparisons with the SVD approach are presented in Section 5.

2. Vector Space Framework. Suppose we have a collection of n
documents and m indexing terms. We represent the collection as an m�n

term-document matrix A. The entry aij represents the importance of term
i in document j. This entry could be, for example, the number of times
that the term appears in the document, although many other measures
have been proposed in the literature. A query is represented as a vector
q where the entry qi represents the importance of term i in the query.
Documents are ranked by computing the inner product score

s = qTA

and documents corresponding to the largest entries in s are deemed most
relevant.

Although the matrix entries can be de�ned in many di�erent ways, in
this paper we use the de�nitions

aij =
log(fij + 1)qPm

k=1 (log(fkj + 1))
2
;

and

qi = �(f̂i) � log

 
n�

Pn

j=1 �(fij)Pn

j=1 �(fij)

!
;



LSI VIA A SEMI-DISCRETE MATRIX DECOMPOSITION 3

where fij is the frequency of term i in doc j, f̂i is the frequency of term
i in the query and � is the function that is one if its argument is nonzero
and zero otherwise.

3. LSI via the SVD. In latent semantic indexing, we represent the
document and queries in a compact representation with the hope that doc-
uments with similar concepts will appear more similar. One way to do this
is using the singular value decomposition. We will briey review the SVD
and then explain its use in LSI.

The rank-k SVD approximation to a matrix is a sum of k triplets

A � Ak �

kX
i=1

�iuiv
T
i ;

where the singular values, �i, are nonnegative scalars in decreasing order,
and the left and right singular vectors, ui and vi, each form orthonormal
sets; that is, each vector has length one and is orthogonal to all other
vectors in the set. In matrix form, this is written as

A � Ak � Uk�kV
T
k :

It can be shown that Ak is the best rank-k approximation to A in the
Frobenius norm and in the Euclidean norm [6].

To score documents against queries, we compute the inner product
between the pseudo-query and the pseudo-documents where the pseudo-
query is given by

~q = UT
k q;

and the pseudo-document matrix is given by

~A = �kV
T
kN;

whereN is a diagonal matrix of inverse column norms, i.e., it has the e�ect
of normalizing the columns of �kV

T
k .

The SVD has been used quite e�ectively for information retrieval, as
documented in numerous reports. We recommend the original LSI paper
[3], a paper by Dumais reporting the e�ectiveness of the LSI approach on
the TREC-3 dataset [4], and a more mathematical paper by Berry, Dumais
and O'Brien [1] for further information.

4. LSI via a Semi-Discrete Decomposition. The SVD contains
a lot of information, probably more than is necessary for this application.
To save storage, we propose replacing the SVD by a semi-discrete decom-
position.

The decomposition we propose is not new. It was introduced by
O'Leary and Peleg [7] in 1983 for digital image compression. We will briey



4 TAMARA G. KOLDA AND DIANNE P. O'LEARY

describe the decomposition but refer the reader to [7] for more detailed in-
formation. We still write the matrix approximation as a sum of triplets,

Ak =

kX
i=1

dixiy
T
i ;

but this time the m-vector xi and the n-vector yi have entries taken from
the set f�1; 0; 1g, while the scalar di can be any positive number. We write
this in matrix form as

Ak = XkDkY
T
k :

This decomposition does not reproduce A exactly, even if k = n, but the
rank-k approximation requires only the storage of 2k(n + m) bits plus k
scalars and is thus much more economical than the SVD. A greedy algo-
rithm is used to construct each triplet, and convergence is monotone.

To construct the kth triplet, we do the following: Form the residual
matrix A(c) = A �Xk�1Dk�1Y

T
k�1. (Initially, the matrices Xk�1, Dk�1,

and YT
k�1 are null.) We would like to choose d, x and y such that kA(c)�

dxyT kF is minimized. We solve this problem inexactly and iteratively.
First we choose an n-vector y with all entries in f�1; 0; 1g. Fixing that
choice of y, we solve

min
x2f�1;0;1gm

d2<

kA(c) � dxyT kF :

We can solve this problem exactly for x and d. We then �x x and solve

min
y2f�1;0;1gn

d2<

kA(c) � dxyT kF :

This problem too can be solved exactly for y and d. We repeat this process
until the change in deviation is below a given threshold. The current values
of x;y and d are added to the current decomposition to form Xk;Dk and
Yk.

We evaluate queries, in much the same way as we did for the SVD. We
have

~A = DkYk
TN; ~q = Xk

Tq:

Here, N normalizes the columns of DkY
T
k .

5. Computational Results. Information retrieval systems are com-
pared via an average precision measure. To compute this measure, we
assume that we have scored the set of documents with respect to a given
query and that we rank the documents in decreasing order of score. Let



LSI VIA A SEMI-DISCRETE MATRIX DECOMPOSITION 5

ri denote the number of relevant documents among the top i documents.
The precision for the top i documents, pi, is then de�ned as

pi =
ri

i
;

i.e., the proportion of the top i documents that are relevant.
The N -point (interpolated) average precision for a single query is de-

�ned as

1

N

N�1X
i=0

~p

�
i

N � 1

�
:

where

~p(x) = max
ri
rn
�x

pi:

Typically, 11-point interpolated average precision is used. Each of our data
sets has multiple queries, so we compare the mean average precision and
the median average precision, expressed as percentages. In other papers,
average precision generally refers to mean average precision.

We did experiments with the MEDLINE data set. Characteristics of
the data set are listed in Table 5.1. The MEDLINE test set comes with a

Table 5.1

Characteristics of the MEDLINE Collection

Number of Documents: 1033
Number of (Indexing) Terms: 5526
File size: 0.4 MB
Avg. No. of Terms/Document: 48
Avg. No. of Documents/Term: 9
% Nonzero Entries in Matrix: 0.87
Number of Queries: 30
Avg. No of Terms/Query: 10
Avg. No. Relevant/Query: 23

document �le, a query �le and a relevancy judgment �le. We �rst removed
all the stop words (common words such as \the" or \because") from the
document and query �les using the stop word removal program described
in [5]. Any word that appears in two di�erent documents after stop word
removal was used as an indexing term. Then we determined the entries in
A and q as described in Section 4.

In Figure 5.1, we present the results of our tests. The upper right
�gure compares the mean average precision to query time, and the upper
left graph compares the median average precision to query time. The query
time is the total time required to execute all 30 queries. Observe that



6 TAMARA G. KOLDA AND DIANNE P. O'LEARY

Table 5.2

Comparison of the SDD and SVD methods on the MEDLINE data at the query time
where the SDD has the highest mean average precision.

SDD SVD
Query Time (Sec) 2.9 3.1
Dimension (k) 120 10
Mean Avg Prec 63.2 34.9
Median Avg Prec 68.8 32.1

Decomp Storage (MB) 0.2 0.5
Decomp Time (Sec) 194.2 2.6
Rel F-Norm of Resid 0.87 0.94

the SDD method has maximal precision at a query time of 3.1 seconds,
corresponding to k = 120, a mean average precision of 63.2 and a median
average precision of 68.8. The SVD method reaches its peak at 8.4 seconds,
corresponding to k = 110, and mean and median average precisions of 65.5
and 71.7 respectively.

A comparison of the two methods on individual queries is given in
Figure 5.2. The dimensions are chosen to be the best values for each
method. The performance of the SDD method is on par with the SVD
method except for queries 26 and 27. We have no explanation for the SDD
behavior on these two queries.

In terms of storage, the SDD method is extremely economical. The
middle left graph of Figure 5.1 plots mean average precision vs. decom-
position (in megabytes (MB)) size and the middle right graph plots me-
dian average precision vs. the decomposition size. Note that a signi�cant
amount of extra storage space is required in the computation of the SVD;
this is not reected in these numbers. From these plots, we see that even
a rank-30 SVD takes 50% more storage than a 600-dimensional SDD, and
each increment of 10 in rank adds approximately 0.5 MB of additional stor-
age to the SVD. The SVD requires over 1.5 MB before it even begins to
come close to what the SDD can do in less than 0.2 MB.

The lower left graph illustrates the growth in required storage as the
dimension of the decomposition grows. For a rank-600 approximation, the
SVD requires over 30 MB of storage while the SDD requires less than 1
MB.

It is interesting to see how good these methods are at approximating
the matrix. The lower right graph plots the ratio of the relative Frobenius
norm (F-norm) of the residual to the Frobenius norm of A, as a function
of storage (logarithmic scale).

6. Conclusions. In these limited experiments, the discrete decompo-
sition was a competitive alternative to the SVD for latent semantic index-
ing and o�ers an improvement over the vector space method. The discrete



LSI VIA A SEMI-DISCRETE MATRIX DECOMPOSITION 7

Fig. 5.1. A comparison of the SVD (o) and SDD (*) on the MEDLINE data set. We
plot 60 data points for each graph corresponding to k = 10; 20; : : : ; 600. The dotted lines
show the corresponding data for the vector space method.

0 10 20
20

40

60

80

Query Time (sec)

M
ea

n 
A

vg
 P

re
c

0 10 20
20

40

60

80

Query Time (sec)

M
ed

ia
n 

A
vg

 P
re

c
0 0.5 1 1.5

20

40

60

80

Decomp Storage (MBytes)

M
ea

n 
A

vg
 P

re
c

0 0.5 1 1.5
20

40

60

80

Decomp Storage (MBytes)
M

ed
ia

n 
A

vg
 P

re
c

0 200 400 600
10

−2

10
0

10
2

Rank

D
ec

om
p 

S
iz

e 
(M

B
)

10
−2

10
0

10
2

0

0.5

1

Decomp Size (MB)

R
es

id
ua

l R
el

 F
−

N
or

m

model uses only a small fraction of the storage space.

In a future report we will discuss results of more extensive tests and
explore the critical issue of dynamic updating of the document collection.

Acknowledgements. We are grateful to Duncan Buell, John Conroy,
Ken Kolda, Steve Kratzer, Joe McCloskey, and Doug Oard for helpful
comments.

REFERENCES

[1] M. W. Berry, S. T. Dumais, and G. W. O'Brien, Using linear algebra for intelli-
gent information retrieval, SIAM Review, 37 (1995), pp. 573{595.

[2] J. P. Callan, B. Croft, and S. M. Harding, The INQUERY retrieval system,
in Proceedings of the Third International Conference on Database and Expert
Systems Applications, Springer-Verlag, 1992, pp. 78{83.

[3] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-

man, Indexing by latent semantic analysis, Journal of the Society for Informa-
tion Science, 41 (1990), pp. 391{407.

[4] S. Dumais, Improving the retrieval of infomation from external sources, Behavior
Research Methods, Instruments, & Computers, 23 (1991), pp. 229{236.

[5] W. B. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures and

Algorithms, Prentice Hall, Englewood Cli�s, New Jersey, 1992.



8 TAMARA G. KOLDA AND DIANNE P. O'LEARY

Fig. 5.2. A comparison of the SVD (k = 110) and SDD (k = 120) methods on the 30
individual queries from the MEDLINE data set. The asterisks (*) represent the SDD
method and the circles (o) represent the SVD method.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Query

M
ea

n 
A

vg
 P

re
c

[6] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Press,
2nd ed., 1989.

[7] D. P. O'Leary and S. Peleg, Digital image compression by outer product expan-

sion, IEEE Transactions on Communications, 31 (1983), pp. 441{444.
[8] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval,

McGraw-Hill, 1983.


